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Density of the Fisher zeros for the three-state and four-state Potts models
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The numbers of states up to=12 for the three-state Potts model and up.tol0 for the four-state Potts
model onL XL square lattice with self-dual boundary condition are enumerated using the microcanonical
transfer matrix exploiting the permutation symmetry of the model. From these numbers of states, the densities
of the Fisher zerog(6) of the partition function in the complex=(1+(Q-1)e#%)/\Q plane are determined
for the zeros on the unit circle,=€'’. For smallg the density of zeros obeys the finite-size scaling, allowing
us to estimate the order parameter and the thermal exponent.
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[. INTRODUCTION square lattice in the absence of an external magnetic field lie
on the circle with center —-1Q-1) and radius/Q/(Q-1) in

the complexy plane, while the AFM circle of the lIsing
model completely disappears fQ>2 [5,6].

If the density of zeros is found, the free energy, the equa-
n of state, and all other thermodynamic functions can be

The Q-state Potts modgll] in two dimensions exhibits a
rich variety of critical behavior and is very fertile ground for
the analytical and numerical investigation of first- and
second-order phase transitions. With the exception of thﬁo

two-state Pottglsing) model, exact solutions for arbitraQ  ,prained. However, very little is known about the actual form
are not known. The Potts model on a latt@ewith N sites ¢ the density of zeros. Recently Lu and Wi found the

andN, bonds is defined by the Hamiltonian density of the Fisher zeros for the square lattice Ising model
_ with a Brascamp-Kunz boundary condition in the thermody-
Hqo= ) Ao, 07), @) namic limit. They also determined the Fisher zeros of the

b square lattice Ising model with self-dual boundary condition,
whereJ is the coupling constarfl>0 (J<O0) for (antjfer-  and calculated their densities for infinite strij@. Creswick
romagnetic coupling ¢i,j) indicates a sum over nearest- and Kim[9] obtained the density of the Yang-Lee zeros for
neighbor pairs, and;=1,2, ... Q. If we define the number the square lattice Ising model by evaluating the exact PF on
of statesQq(E) with a given energyE which is a positive finite lattices. Furthermore, using Monte Carlo data, Janke
; 2 . : d Kenng10] investigated the properties of the density of
integer 0<SE<N,, the partition functionPF) of the model &~ g10] gay prop y
z=3,,, e, a sum overQ' possible spin configurations zeros for the square lattice ten-state Potts model, the three-

l{)”n} 'tt’ ' dimensional Ising and three-state Potts models, the square
can be written as lattice XY model, and lattice gauge theories.

Np In this paper, by enumerating the exact number of states
ZQ(y):y_NbE Qo(E)YF, (2)  for the three-state and four-state Potts models LonL
E=0 square lattices with self-dual boundary conditidi=L2+1

o 2 ; X ; .
e p N —ANe andN,=2L7), we investigate the density of the Fisher zeros
wherey=e"" and2g2, Qq(E)=Q™. ___whose properties are not known. The self-dual boundary
By introducing the concept of the zeros of the PF in thecongition used in this paper is defined in Fig[@,8]. The
complexmagnetic-field plangYang-Lee zeros Yang and  microcanonical transfer matrix exploiting the permutation
Lee [2] proposed a mechanism for the occurrence of phasgymmetry of the moddl6,11] is used to enumerate the exact
transitions in the thermodynamic limit and yielded an insightnymber of states up tb=12 for Q=3 (3'45=1.523x 10°°
into the unsolved problem of the ferromagnetiéM) Ising  configurationy and up to L=10 for Q=4 (4101=6.428
model in magnetic field at a(bitrary temperat(igg. Eisher X 10°° configurations For example, Table | shows the num-
[4] found that the PF zeros in the complgxplane (Fisher  ber of states)o_3(E) of the three-state Potts model on 12
zerog are also important in understanding phase transitionsx 12 square lattice with self-dual boundary condition.
and showed that for the square lattice Ising model in the),(0)=3 is the number of the FM ground states whereas
absence of magnetic field the Fisher zeros in the complex 05(288=1.080x 10?® is the number of the AFM ground
plane lie on two circlegthe FM circleyqy=-1+2¢” and  gtates. The largest number of states (k(192)=7.606

the antiferromagneti¢AFM) circle yapy=1+12€"%] in the v 1067, Figure 2 shows the entrop§(E)=In Q4(E) of the
thermodynamic limit. Recently it has been shown that fory, ee-state Potts model fau=12.

self-dual_boundary condition near the FM critical point
=1/(1+vQ) the zeros of th&-state Potts model on a finite 1l. DENSITY OF ZEROS FOR THE THREE-STATE POTTS
MODEL

For self-dual boundary condition, some of the Fisher ze-
*Electronic address: sykim@kias.re.kr ros of the Potts model lie on the unit circle in the complex
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S 1 2 S 4 S FIG. 2. The entropyS(E)=In Q5(E) for the 12< 12 three-state
Potts model with self-dual boundary condition. The corresponding
values forQ);3(1)=03(2)=0 are omitted in the figure.

FIG. 1. 5X5 square lattice with self-dual boundary

condition.
u=[1+(Q-1)y]/\Q plane. The zeros on the unit circle map o=(u- 1 [ 40 @)
into themselves under the duality transformation-u™. - JQ u-g?

The self-duality conditioru?=1 determines the FM critical

point u,=1. Figure 3 shows the Fisher zeros in the complex@nd the latent heat is given kye=(1- 1/JQ)2mg(0). For a

u plane of the three-state Potts model onxIT2 square lat- finite-size system of sizé, the singular part of the energy
tice. The figure shows only Fisher zeros on the unit diskhas the scaling form

lu|<1. The Fisher zeros withu|>1 are obtained from L ae

those with|u| <1 by the duality transformation. The number etL) = L™e(tl), ®)

of the zeros on the unit circle is 108, corresponding to 37.5%vherey; is the thermal exponent. In the critical region the

of the total of 288 zeros. singular part of the energy is a homogeneous function of the

In the thermodynamic limit, the singular part of the free reduced temperature—u, from which it follows thatg(6)
energy per sitdg can be written as must also be a homogeneous function for smaif the form

(9]
- Bfs= | 9(0)In(u-€?%do, 3
B S f g( ) n(U 0) ( ) g(ﬂ,L) - L_d+ytg(0|_yt). (6)

for the Fisher zeros on the unit cirdla,=€'?). The singular  If we let #—0 andL — o keeping fLYt=c fixed, then we
part of the energy per site is expressed as haveg(6) ~ |6|“Y?¥. This in turn implies that, for the mod-

TABLE I. The number of state§lo-3(E) of the three-state Potts model for X22 square lattice with
self-dual boundary condition.

E Qq=3(E)

0 3

1 0

2 0

3 72

4 864

191 75225032927945592268009997855136811220062209360886072940230851457056
192 76060009304567600770980455752976522583135268602898164403429820493138
193 75704158671121305700548484295610849932031623011574915929856848371432
286 103861176439350537132456079800

287 4442538973177441024540859664

288 108015898289079928962063078
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FIG. 3. Fisher zeros in the complax plane for the 1X 12
three-state Potts model with self-dual boundary condition. The fig
ure shows only Fisher zeros on the unit disk<1. The Fisher
zeros with|u| > 1 are obtained from those with| <1 by the dual-
ity transformation.

els with second-order phase transitig@s< 4) [1], g(#) van-
ishes ad6|* as # goes to zero where=(d-y,)/y;. That is,
for small 6

a(0) ~ o, 7

where we have used=2-d/y;. Equation(7) agrees with

Fisher’s result for the Ising mod@d]. On the other hand, for
the models with first-order phase transitiqg@s> 4), the den-

sity of zeros on the positive real axis is finite

limg(#) ~ const(latent heat,
6—0

where we have useg=d.

For finite systems the density of zer@ser sitg atgk
=(6+6,1)/2 is defined as

— 1 1
9(6) =—

Ns 9k+1

vy (®)

where 6, (k=1,2,3,..) is the argument of th&th zero on
the unit circle ofZ(u). Figure 4 shows the densities of zeros

for L=9 and 12, respectively. It should be noted that thei

overall forms of the density of zeros fdr=9 and 12 are

almost identical. We expect that these densities of zeros ag

proach a smooth limiting curve in the thermodynamic limit.

Betweend/w=0.1 and 0.4 the density of zeros decreases a:
0 increases. This fact implies that the density of zeros may

vanish aroundd/7w=0.42. A similar behavior is also ob-
served for the density of zeros of the Ising mogé]. As
shown in Fig. 3, around/ 7=0.42, a branch of zeros lying
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FIG. 4. Density of the Fisher zeros in the compleglane of the
three-state Potts model for=9 and 12.

ur™M=o by the duality transformation. It is reasonable to
conjecture that, at the point where the zeros related to the FM
critical point and the zeros related to the AFM critical point

intersect, the density of zeros vanishes.

Figure 5 shows the scaled density of zeros versus the
scaled argument, according to E&), for L=9-12. In the
critical region, i.e., for smallLYt4 the values of the scaled
density of zeros are almost identical, independent of the lat-
tice size, indicating that the forr6) is valid. If we set#
=0 in Eq.(6), we have

g(0,L) =L™""g(0). (9)
The third column of Table Il shows the density of zerogat
for 3<L <12. By using the BST algorithrf12], we extrapo-
lated our results for finite lattices to infinite size and, éor
:‘g‘ (the parameter of the BST algorithmobtainedg(0)
=0.0004), which is an expected result for a second-order
phase transition. The chosen valualx;f‘g1 for the three-state
Potts model corresponds to the correction exporemy;.
For other models, different values of should be chosen

4
000?3000000000
conoft DDDDD 004
DDOOOO E‘D
3r 8p°e o o
— °<> a [m]
= QQAXAAAAA © o
s g Al °
A © °
N
<
— E A
L IN ]
2 A
o L=12 A
Y]
) o L=11
¢ L=10
A =9
1 \ ‘
1 4 7 10
L1/ve

off the unit circle begins to appear. This branch is directed to FIG. 5. The scaled density of zeros versus the scaled argument

the pointu=0 that is connected to the AFM critical point

for the three-state Potts model withFr9—-12.
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TABLE Il. The argumen®, of the first zero, the density of zeros
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TABLE lIl. The argumenté; of the first zero, the density of

g(gl) at 6;, and the thermal exponew(L) for the three-state Potts zerosg(6,), the thermal exponent(L) by Eqg.(10), and the thermal

model. exponenty,(L)™ with the logarithmic correction for the four-state
Potts model.
L b1 g(61) (L) — .
3 0.265876 0.610828 1.580517 - o 9 7L b
4 0.188912 0.541388 1.266530 3 0.289372 0.567991 1.507125 2.113488
5 0.146544 0.459651 1.157568 4 0.201117 0.492904 1.254577 1.756218
6 0.119459 0.394206 1.111652 5 0.153134 0.417372 1.179878 1.621322
7 0.100590 0.343757 1.091091 6 0.122811 0.359406 1.156125 1.557673
8 0.086680 0.304468 1.082282 7 0.101911 0.315566 1.1%11 1.523886
9 0.076003 0.273274 1.079390 8 0.086657 0.281748 1.153872 1.504702
10 0.067554 0.248013 1.079618 9 0.075059 0.255023 1.159983 1.493392
11 0.060708 0.227183 1.081520 10 0.065964 0.233422
12 0.055051 0.209734
e~ L™%%(In L)%, (11)

depending on their universality classes. From E®). we
obtain the thermal exponent

Similarly, the scaling form of the density of zeros can be

modified by replacingL™®t with L™ (In L)~3/4. Figure

In[g(0,L + 1)/g(0,L)]
In[(L +1)/L]

y(L)=d+ (10)

for finite lattices. The fourth column of Table Il showgL)

for several lattices. We again applied the BST algorithm and
for =1, obtainedy,;=1.201) in excellent agreement with
the exact valug;=2.

Ill. DENSITY OF ZEROS FOR THE FOUR-STATE POTTS
MODEL

Ld41/vg(9)

The two-dimensional Potts model has a second-orde
phase transition foQ=<4 and a first-order transition for
Q>4 [1]. The critical properties of the four-state Potts
model have been studied extensively as the limiting case of
sequencgQ=4) of models with continuous phase transi- (&)
tions. As is often the case, the limit of such a sequeQce
=4 exhibits strong corrections to scalifif3]. The borderline
caseQ=4 is the most difficult.

The overall form of the density of zeros f@=4 is quali-
tatively similar to that forQ=3. The third column of Table

[ll shows the density of zeros & for 3<L=<10. The BST
algorithm produces g(0)=-0.0037), for w:%(:d—yt),
which is an expected result for the four-state model. The
fourth column of Table Il shows the values of the thermal
exponenty,(L) by Eg. (10). Here, a simple power-law is
assumed as a test. The extrapolated value is (3366r o
=1, which is in disagreement with the exact valye 3.
Figure Ga) shows the scaled density of zeros versus the
scaled argument, according to E§), for L=7-10. The val-
ues of the scaled density of zeros are divergent in the critica,
region, indicating that the forr¢6) is too simple to the four-
state model.

The singular part of the energy f@=4 has the scaling
behavior with the logarithmic correctigi 3] as

3/4Ld—1/vg(e)

)

(InL
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6(b) shows the scaled density of zeros with the logarithmic
correction versus the scaled argument. The divergence be-
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FIG. 6. The scaled density of zeros versus the scaled argument
for the four-state Potts moddL=7-10 (a) without the logarithmic
correction andb) with the logarithmic correction.
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tween the values of the scaled density of zeros is disappearedined, and its zeros in the complex temperature plane are
in the critical region. Now, with the logarithmic correction, determined. For self-dual boundary condition, some of the
we again evaluate the thermal exponents for finite sizes thaisher zeros lie on the unit circlel,=€?) in the complex
are shown in the fifth column of Table IIl. The extrapolated u=[1+(Q-1)y]/VQ plane. For these zeros, the density of
value is 1.5289) for w=1, which is close to the exact value. the Fisher zerog(#6) of the PF is calculated. For smalithe
density of zeros obeys the finite-size scaling. This fact allows
IV. CONCLUSION us to estimate the order parameter and the thermal exponent.

We have enumerated the exact numbers of states up to
L=12 for the three-state Potts model anq ufh. to10 for the ACKNOWLEDGMENT
four-state Potts model onX L square lattice with self-dual
boundary condition, using the microcanonical transfer ma- The author thanks Professor R. J. Creswick for valuable
trix. If the number of states is known, the exact PF is ob-discussions.
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