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The numbers of states up toL=12 for the three-state Potts model and up toL=10 for the four-state Potts
model onL3L square lattice with self-dual boundary condition are enumerated using the microcanonical
transfer matrix exploiting the permutation symmetry of the model. From these numbers of states, the densities
of the Fisher zerosgsud of the partition function in the complexu=s1+sQ−1de−bJd /ÎQ plane are determined
for the zeros on the unit circleu0=eiu. For smallu the density of zeros obeys the finite-size scaling, allowing
us to estimate the order parameter and the thermal exponent.
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I. INTRODUCTION

The Q-state Potts model[1] in two dimensions exhibits a
rich variety of critical behavior and is very fertile ground for
the analytical and numerical investigation of first- and
second-order phase transitions. With the exception of the
two-state Potts(Ising) model, exact solutions for arbitraryQ
are not known. The Potts model on a latticeG with Ns sites
andNb bonds is defined by the Hamiltonian

HQ = − Jo
ki,jl

dssi,s jd, s1d

whereJ is the coupling constant[J.0 sJ,0d for (anti)fer-
romagnetic coupling], ki , jl indicates a sum over nearest-
neighbor pairs, andsi =1,2, . . . ,Q. If we define the number
of statesVQsEd with a given energyE which is a positive
integer 0øEøNb, the partition function(PF) of the model
Z=ohsnj e−bH, a sum overQNs possible spin configurations,
can be written as

ZQsyd = y−Nbo
E=0

Nb

VQsEdyE, s2d

wherey=e−bJ andoE=0
Nb VQsEd=QNs.

By introducing the concept of the zeros of the PF in the
complexmagnetic-field plane(Yang-Lee zeros), Yang and
Lee [2] proposed a mechanism for the occurrence of phase
transitions in the thermodynamic limit and yielded an insight
into the unsolved problem of the ferromagnetic(FM) Ising
model in magnetic field at arbitrary temperature[3]. Fisher
[4] found that the PF zeros in the complexy plane (Fisher
zeros) are also important in understanding phase transitions,
and showed that for the square lattice Ising model in the
absence of magnetic field the Fisher zeros in the complexy
plane lie on two circles[the FM circleyFM=−1+Î2eiu and
the antiferromagnetic(AFM) circle yAFM =1+Î2eiu] in the
thermodynamic limit. Recently it has been shown that for
self-dual boundary condition near the FM critical pointyc

=1/s1+ÎQd the zeros of theQ-state Potts model on a finite

square lattice in the absence of an external magnetic field lie
on the circle with center −1/sQ−1d and radiusÎQ/ sQ−1d in
the complexy plane, while the AFM circle of the Ising
model completely disappears forQ.2 [5,6].

If the density of zeros is found, the free energy, the equa-
tion of state, and all other thermodynamic functions can be
obtained. However, very little is known about the actual form
of the density of zeros. Recently Lu and Wu[7] found the
density of the Fisher zeros for the square lattice Ising model
with a Brascamp-Kunz boundary condition in the thermody-
namic limit. They also determined the Fisher zeros of the
square lattice Ising model with self-dual boundary condition,
and calculated their densities for infinite strips[8]. Creswick
and Kim [9] obtained the density of the Yang-Lee zeros for
the square lattice Ising model by evaluating the exact PF on
finite lattices. Furthermore, using Monte Carlo data, Janke
and Kenna[10] investigated the properties of the density of
zeros for the square lattice ten-state Potts model, the three-
dimensional Ising and three-state Potts models, the square
lattice XY model, and lattice gauge theories.

In this paper, by enumerating the exact number of states
for the three-state and four-state Potts models onL3L
square lattices with self-dual boundary condition(Ns=L2+1
andNb=2L2), we investigate the density of the Fisher zeros
whose properties are not known. The self-dual boundary
condition used in this paper is defined in Fig. 1[6,8]. The
microcanonical transfer matrix exploiting the permutation
symmetry of the model[6,11] is used to enumerate the exact
number of states up toL=12 for Q=3 (3145=1.52331069

configurations) and up to L=10 for Q=4 (4101=6.428
31060 configurations). For example, Table I shows the num-
ber of statesVQ=3sEd of the three-state Potts model on 12
312 square lattice with self-dual boundary condition.
V3s0d=3 is the number of the FM ground states whereas
V3s288d=1.08031026 is the number of the AFM ground
states. The largest number of states isV3s192d=7.606
31067. Figure 2 shows the entropySsEd=ln V3sEd of the
three-state Potts model forL=12.

II. DENSITY OF ZEROS FOR THE THREE-STATE POTTS
MODEL

For self-dual boundary condition, some of the Fisher ze-
ros of the Potts model lie on the unit circle in the complex*Electronic address: sykim@kias.re.kr
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u=f1+sQ−1dyg /ÎQ plane. The zeros on the unit circle map
into themselves under the duality transformationu→u−1.
The self-duality conditionu2=1 determines the FM critical
point uc=1. Figure 3 shows the Fisher zeros in the complex
u plane of the three-state Potts model on 12312 square lat-
tice. The figure shows only Fisher zeros on the unit disk
uuu ø1. The Fisher zeros withuuu .1 are obtained from
those withuuu ,1 by the duality transformation. The number
of the zeros on the unit circle is 108, corresponding to 37.5%
of the total of 288 zeros.

In the thermodynamic limit, the singular part of the free
energy per sitefs can be written as

− bfs =E gsudlnsu − eiuddu, s3d

for the Fisher zeros on the unit circlesu0=eiud. The singular
part of the energy per site is expressed as

e= Su −
1

ÎQ
D E gsud

u − eiudu, s4d

and the latent heat is given byDe=s1−1/ÎQd2pgs0d. For a
finite-size system of sizeL, the singular part of the energy
has the scaling form

est,Ld = L−d+ytestLytd, s5d

whereyt is the thermal exponent. In the critical region the
singular part of the energy is a homogeneous function of the
reduced temperatureu−uc from which it follows thatgsud
must also be a homogeneous function for smallu of the form
[9]

gsu,Ld = L−d+ytgsuLytd. s6d

If we let u→0 and L→` keepinguLyt=c fixed, then we
havegsud,uuusd−ytd/yt. This in turn implies that, for the mod-

FIG. 1. 535 square lattice with self-dual boundary
condition.

TABLE I. The number of statesVQ=3sEd of the three-state Potts model for 12312 square lattice with
self-dual boundary condition.

E VQ=3sEd

0 3

1 0

2 0

3 72

4 864

A A
191 75225032927945592268009997855136811220062209360886072940230851457056

192 76060009304567600770980455752976522583135268602898164403429820493138

193 75704158671121305700548484295610849932031623011574915929856848371432

A A
286 103861176439350537132456079800

287 4442538973177441024540859664

288 108015898289079928962063078

FIG. 2. The entropySsEd=ln V3sEd for the 12312 three-state
Potts model with self-dual boundary condition. The corresponding
values forV3s1d=V3s2d=0 are omitted in the figure.
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els with second-order phase transitionssQø4d [1], gsud van-
ishes asuuuk as u goes to zero wherek=sd−ytd /yt. That is,
for small u

gsud , uuu1−a, s7d

where we have useda=2−d/yt. Equation(7) agrees with
Fisher’s result for the Ising model[4]. On the other hand, for
the models with first-order phase transitionssQ.4d, the den-
sity of zeros on the positive real axis is finite

lim
u→0

gsud , constslatent heatd,

where we have usedyt=d.

For finite systems the density of zeros(per site) at ūk
=suk+uk+1d /2 is defined as

gsūkd =
1

Ns

1

uk+1 − uk
, s8d

whereuk sk=1,2,3, . . .d is the argument of thekth zero on
the unit circle ofZsud. Figure 4 shows the densities of zeros
for L=9 and 12, respectively. It should be noted that the
overall forms of the density of zeros forL=9 and 12 are
almost identical. We expect that these densities of zeros ap-
proach a smooth limiting curve in the thermodynamic limit.
Betweenu /p=0.1 and 0.4 the density of zeros decreases as
u increases. This fact implies that the density of zeros may
vanish aroundu /p=0.42. A similar behavior is also ob-
served for the density of zeros of the Ising model[7]. As
shown in Fig. 3, aroundu /p=0.42, a branch of zeros lying
off the unit circle begins to appear. This branch is directed to
the point u=0 that is connected to the AFM critical point

uc
AFM =` by the duality transformation. It is reasonable to

conjecture that, at the point where the zeros related to the FM
critical point and the zeros related to the AFM critical point
intersect, the density of zeros vanishes.

Figure 5 shows the scaled density of zeros versus the
scaled argument, according to Eq.(6), for L=9–12. In the
critical region, i.e., for smallLytu the values of the scaled
density of zeros are almost identical, independent of the lat-
tice size, indicating that the form(6) is valid. If we setu
=0 in Eq. (6), we have

gs0,Ld = L−d+ytgs0d. s9d

The third column of Table II shows the density of zeros atū1
for 3øLø12. By using the BST algorithm[12], we extrapo-
lated our results for finite lattices to infinite size and, forv
= 4

5 (the parameter of the BST algorithm), obtainedgs0d
=0.000s4d, which is an expected result for a second-order
phase transition. The chosen value ofv= 4

5 for the three-state
Potts model corresponds to the correction exponentd−yt.
For other models, different values ofv should be chosen

FIG. 3. Fisher zeros in the complexu plane for the 12312
three-state Potts model with self-dual boundary condition. The fig-
ure shows only Fisher zeros on the unit diskuuu ø1. The Fisher
zeros withuuu .1 are obtained from those withuuu,1 by the dual-
ity transformation.

FIG. 4. Density of the Fisher zeros in the complexu plane of the
three-state Potts model forL=9 and 12.

FIG. 5. The scaled density of zeros versus the scaled argument
for the three-state Potts model withL=9–12.
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depending on their universality classes. From Eq.(9) we
obtain the thermal exponent

ytsLd = d +
lnfgs0,L + 1d/gs0,Ldg

lnfsL + 1d/Lg
s10d

for finite lattices. The fourth column of Table II showsytsLd
for several lattices. We again applied the BST algorithm and,
for v=1, obtainedyt=1.20s1d in excellent agreement with
the exact valueyt=

6
5.

III. DENSITY OF ZEROS FOR THE FOUR-STATE POTTS
MODEL

The two-dimensional Potts model has a second-order
phase transition forQø4 and a first-order transition for
Q.4 [1]. The critical properties of the four-state Potts
model have been studied extensively as the limiting case of a
sequencesQø4d of models with continuous phase transi-
tions. As is often the case, the limit of such a sequenceQ
=4 exhibits strong corrections to scaling[13]. The borderline
caseQ=4 is the most difficult.

The overall form of the density of zeros forQ=4 is quali-
tatively similar to that forQ=3. The third column of Table

III shows the density of zeros atū1 for 3øLø10. The BST
algorithm produces gs0d=−0.003s7d, for v= 1

2s=d−ytd,
which is an expected result for the four-state model. The
fourth column of Table III shows the values of the thermal
exponentytsLd by Eq. (10). Here, a simple power-law is
assumed as a test. The extrapolated value is 1.366(3) for v
=1, which is in disagreement with the exact valueyt=

3
2.

Figure 6(a) shows the scaled density of zeros versus the
scaled argument, according to Eq.(6), for L=7–10. The val-
ues of the scaled density of zeros are divergent in the critical
region, indicating that the form(6) is too simple to the four-
state model.

The singular part of the energy forQ=4 has the scaling
behavior with the logarithmic correction[13] as

e, L−d+ytsln Ld−3/4. s11d

Similarly, the scaling form of the density of zeros can be
modified by replacingL−d+yt with L−d+ytsln Ld−3/4. Figure
6(b) shows the scaled density of zeros with the logarithmic
correction versus the scaled argument. The divergence be-

TABLE II. The argumentu1 of the first zero, the density of zeros

gsū1d at ū1, and the thermal exponentytsLd for the three-state Potts
model.

L u1 gsū1d ytsLd

3 0.265876 0.610828 1.580517

4 0.188912 0.541388 1.266530

5 0.146544 0.459651 1.157568

6 0.119459 0.394206 1.111652

7 0.100590 0.343757 1.091091

8 0.086680 0.304468 1.082282

9 0.076003 0.273274 1.079390

10 0.067554 0.248013 1.079618

11 0.060708 0.227183 1.081520

12 0.055051 0.209734

TABLE III. The argumentu1 of the first zero, the density of

zerosgsū1d, the thermal exponentytsLd by Eq.(10), and the thermal
exponentytsLdln with the logarithmic correction for the four-state
Potts model.

L u1 gsū1d ytsLd ytsLdln

3 0.289372 0.567991 1.507125 2.113488

4 0.201117 0.492904 1.254577 1.756218

5 0.153134 0.417372 1.179878 1.621322

6 0.122811 0.359406 1.156125 1.557673

7 0.101911 0.315566 1.151111 1.523886

8 0.086657 0.281748 1.153872 1.504702

9 0.075059 0.255023 1.159983 1.493392

10 0.065964 0.233422

FIG. 6. The scaled density of zeros versus the scaled argument
for the four-state Potts modelsL=7–10d (a) without the logarithmic
correction and(b) with the logarithmic correction.
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tween the values of the scaled density of zeros is disappeared
in the critical region. Now, with the logarithmic correction,
we again evaluate the thermal exponents for finite sizes that
are shown in the fifth column of Table III. The extrapolated
value is 1.525s9d for v=1, which is close to the exact value.

IV. CONCLUSION

We have enumerated the exact numbers of states up to
L=12 for the three-state Potts model and up toL=10 for the
four-state Potts model onL3L square lattice with self-dual
boundary condition, using the microcanonical transfer ma-
trix. If the number of states is known, the exact PF is ob-

tained, and its zeros in the complex temperature plane are
determined. For self-dual boundary condition, some of the
Fisher zeros lie on the unit circlesu0=eiud in the complex
u=f1+sQ−1dyg /ÎQ plane. For these zeros, the density of
the Fisher zerosgsud of the PF is calculated. For smallu the
density of zeros obeys the finite-size scaling. This fact allows
us to estimate the order parameter and the thermal exponent.
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